Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Transitions of biological tissues between solid‐like and liquid‐like phases have been of great recent interest. Here, the first successful cell‐by‐cell evaluation of tissue viscoelastic transition is presented. An in situ micro‐mechanical perturbation is applied to a microtissue, and the resulting volumetric deformation is evaluated using 3D light‐sheet microscopy and digital image correlation (DIC), quantifying both solid‐like, well‐aligned displacement and liquid‐like swirling motion between individual cells. The viscoelastic transition of fibroblasts is crucial in fundamental physiological events, such as placentation, cancer dissemination, and wound healing. This study investigates 3D organoid systems modeling maternal‐fetal and tumor‐stroma interfaces, demonstrating established molecular and structural parallels. The analysis visualizes individual cells in stromal‐epithelial interactions and how they collectively alter tissue viscoelastic properties. It also enables in‐silico microdissection, linking single‐cell viscoelasticity with multi‐channel fluorescence. RNAseq analysis of endometrial stromal fibroblasts shows that decidualization activates mechano‐transcriptional regulators, including myocardin‐related transcription factors (MRTFs), associated with increased cellular contractility and actomyosin mobilization. Knocking down MRTFA in cancer‐associated fibroblasts in the tumor‐fibroblast co‐culture 3D model induces significant changes in fibroblast properties, mirroring those observed in the maternal‐fetal interface model, highlighting parallels between placentation and cancer invasion. This analysis confirms existing beliefs and discovers new insights broadly applicable to studying organoids, embryos, tumors, and other tissues.more » « lessFree, publicly-accessible full text available March 1, 2026
-
We have developed a novel microscopic analysis system that combines the functions of light-sheet fluorescence microscopy (LSM) and dynamic mechanical analysis (DMA). We have integrated the three uniquely designed components of (i) a MEMS dynamic compression device with a μ-force sensor, (ii) a high-speed 3D light-sheet scanner and an imager, and (iii) a custom-programmed image-based 3D modeling algorithm. Here, we demonstrate spatially-resolved mechanical characterization of viscoelastic materials under high-resolution 3D fluorescence microscopy for the first time.more » « less
-
Abstract We evaluated the elasticity of live tissues of zebrafish embryos using label‐free optical elastography. We employed a pair of custom‐built elastic microcantilevers to gently compress a zebrafish embryo and used optical‐tracking analysis to obtain the induced internal strain. We then built a finite element method (FEM) model and matched the strain with the optical analysis. The elastic moduli were found by minimizing the root‐mean‐square errors between the optical and FEM analyses. We evaluated the average elastic moduli of a developing somite, the overlying ectoderm, and the underlying yolk of seven zebrafish embryos during the early somitogenesis stages. The estimation results showed that the average elastic modulus of the somite increased from 150 to 700 Pa between 4‐ and 8‐somite stages, while those of the ectoderm and the yolk stayed between 100 and 200 Pa, and they did not show significant changes. The result matches well with the developmental process of somitogenesis reported in the literature. This is among the first attempts to quantify spatially‐resolved elasticity of embryonic tissues from optical elastography.more » « less
-
We have developed a force sensing system to continuously evaluate the mechanical elasticity of micrometer-scale (a few hundred micrometers to a millimeter) live tissues. The sensing is achieved by measuring the deflection of force sensitive cantilevers through microscopic image analysis, which does not require electrical strain gauges. Cantilevers made of biocompatible polydimethylsiloxane (PDMS) were actuated by a piezoelectric actuator and functioned as a pair of chopsticks to measure the stiffness of the specimen. The dimensions of the cantilevers were easily adjusted to match the size, range, and stiffness of the zebrafish samples. In this paper, we demonstrated the versatility of this technique by measuring the mechanical elasticity of zebrafish embryos at different stages of development. The stiffness of zebrafish embryos was measured once per hour for 9 h. From the experimental results, we successfully quantified the stiffness change of zebrafish embryos during embryonic development.more » « less
An official website of the United States government
